Select the search type
  • Site
  • Web
Search

AI Training

Retrieval Augmented Generation (RAG)

Retrieval Augmented Generation (RAG) is an advanced artificial intelligence technique that enhances the capabilities of generative AI models-like large language models (LLMs)-by allowing them to fetch and incorporate up-to-date, domain-specific, or proprietary information from external data sources in real time.

  • 16 May 2025
  • Author: Rod Claar
  • Number of views: 122
  • 0 Comments
Retrieval Augmented Generation (RAG)

Retrieval Augmented Generation (RAG)

Retrieval Augmented Generation (RAG) is an advanced artificial intelligence technique that enhances the capabilities of generative AI models-like large language models (LLMs)-by allowing them to fetch and incorporate up-to-date, domain-specific, or proprietary information from external data sources in real time. This approach bridges the gap between a model’s static, pre-trained knowledge and the need for current, contextually relevant, and authoritative responses1234.

How RAG Works

RAG combines two core components:

  • Retrieval: When a user submits a query, the system first uses an embedding model to convert the query into a vector (a numerical representation of its meaning). This vector is then matched against a database of similarly embedded documents-often stored in a vector database-to identify the most relevant pieces of information1234.

  • Generation: The retrieved content is fed into the LLM along with the original query. The LLM then generates a response that synthesizes both its own knowledge and the newly retrieved information, often providing citations or references to the sources used1234.

Key Benefits

  • Up-to-date and Domain-Specific Answers: RAG enables AI systems to access the latest information or proprietary company data, overcoming the limitations of static training sets and reducing the risk of outdated or irrelevant responses234.

  • Reduced Hallucinations: By grounding responses in retrieved, authoritative documents, RAG significantly decreases the likelihood of AI “hallucinations”-confident but incorrect answers34.

  • Transparency and Auditability: RAG-powered applications can cite their sources, allowing users to verify the origin of the information and increasing trust in AI-generated content23.

  • Cost-Effective and Flexible: RAG removes the need for frequent, expensive retraining of large language models, as new information can be added to the external knowledge base without altering the core model34.

Applications

  • Enterprise Chatbots: Provide employees or customers with precise answers by referencing internal policy documents, knowledge bases, or customer records24.

  • Legal and Research Tools: Generate responses with citations from legal precedents, academic papers, or technical manuals23.

  • Customer Support: Deliver accurate, context-aware support by integrating real-time product information and user data24.

How RAG Differs from Traditional LLMs

Feature Traditional LLMs RAG-Enhanced LLMs
Data Source Static, pre-trained datasets Dynamic, external knowledge bases
Update Frequency Requires retraining for updates Real-time updates via retrieval
Domain-Specific Knowledge Limited to training data Access to proprietary/private data
Transparency Opaque, hard to audit Can cite sources, more auditable

Summary

Retrieval Augmented Generation represents a major step forward in making generative AI more accurate, reliable, and transparent. By seamlessly integrating external, up-to-date information into the generation process, RAG enables AI systems to deliver context-aware, trustworthy, and verifiable responses across a wide range of applications1234.

Citations:

  1. https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/
  2. https://www.pinecone.io/learn/retrieval-augmented-generation/
  3. https://en.wikipedia.org/wiki/Retrieval-augmented_generation
  4. https://aws.amazon.com/what-is/retrieval-augmented-generation/
  5. https://www.oracle.com/artificial-intelligence/generative-ai/retrieval-augmented-generation-rag/
  6. https://learn.microsoft.com/en-us/azure/search/retrieval-augmented-generation-overview
  7. https://www.ibm.com/think/topics/retrieval-augmented-generation
  8. https://cloud.google.com/use-cases/retrieval-augmented-generation
  9. https://www.reddit.com/r/MLQuestions/comments/16mkd84/how_does_retrieval_augmented_generation_rag/
  10. https://www.k2view.com/what-is-retrieval-augmented-generation

Answer from Perplexity: pplx.ai/share

Print

Rod ClaarRod Claar

Other posts by Rod Claar

Contact author
Please login or register to post comments.

Contact author

x